Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mem. Inst. Oswaldo Cruz ; 115: e190469, 2020. graf
Article in English | LILACS, SES-SP | ID: biblio-1135243

ABSTRACT

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Subject(s)
Humans , Animals , Mice , Rats , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Superoxide Dismutase/metabolism , Leishmania braziliensis/drug effects , Leishmania infantum/drug effects , Escherichia coli Proteins/genetics , Escherichia coli , Guanine/analogs & derivatives , Antimony/toxicity , Rabbits , Superoxide Dismutase/genetics , Leishmania braziliensis/enzymology , Leishmania infantum/enzymology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Escherichia coli Proteins/metabolism , Guanine/pharmacology , Hydrogen Peroxide/toxicity , Antiprotozoal Agents/pharmacology
2.
International Journal of Pediatrics ; (6): 615-618, 2017.
Article in Chinese | WPRIM | ID: wpr-662329

ABSTRACT

OGG1 gene is widely expressed in eukaryotic cells as a housekeeping gene,which can identi-fy 8-oxoG,oxidative damage product,and remove it via the base excision repair pathway to repair DNA and pro-tect it from mutation. Increasing attention is paid to investigate the OGG1 gene,which is found to play an impor-tant role in tumorigenesis,aging,degenetative diseases,cardiomyopathy,and allergic diseases. Insight of the ex-pression of OGG1 and its regulatory mechanism can bring us a new way to treat these diseases.

3.
International Journal of Pediatrics ; (6): 615-618, 2017.
Article in Chinese | WPRIM | ID: wpr-659803

ABSTRACT

OGG1 gene is widely expressed in eukaryotic cells as a housekeeping gene,which can identi-fy 8-oxoG,oxidative damage product,and remove it via the base excision repair pathway to repair DNA and pro-tect it from mutation. Increasing attention is paid to investigate the OGG1 gene,which is found to play an impor-tant role in tumorigenesis,aging,degenetative diseases,cardiomyopathy,and allergic diseases. Insight of the ex-pression of OGG1 and its regulatory mechanism can bring us a new way to treat these diseases.

4.
Rio de Janeiro; s.n; 2011. 138 p. ilus.
Thesis in Portuguese | LILACS | ID: lil-691530

ABSTRACT

Didaticamente, podemos dividir o espectro da radiação ultravioleta (UV) em três faixas: UVA (400 a 320 nm), UVB (320 a 290 nm) e UVC (290 a 100 nm). Apesar do UVC ou UV-curto ser eficientemente filtrado pela camada de ozônio da Terra e sua atmosfera, este é uma das faixas do espectro de UV mais usadas para explorar as consequências de danos causados ao DNA, já que a letalidade induzida por este agente está relacionada aos danos diretos no genoma celular, como as lesões dímero de pirimidina, que são letais se não reparadas. Contudo, demonstrou-se que a radiação UVC pode gerar espécies reativas de oxigênio (ERO), como o oxigênio singleto (1O2). Embora, o radical hidroxil (•OH) cause modificações oxidativas nas bases de DNA, alguns trabalhos indicam que o 1O2 também está envolvido nos danos oxidativos no DNA. Esta ERO é produzida por vários sistemas biológicos e reações fotossensibilização, quando cromóforos são expostos à luz visível ou são excitados pela luz UV, permitindo que essa energia possa ser transferida para o oxigênio sendo convertido em 1O2, que é conhecido por modificar resíduos de guanina, gerando 8-oxoG, que caso não seja reparada pode gerar uma transversão GC-TA. O objetivo deste trabalho foi o de elucidar a participação de ERO nos efeitos genotóxicos e mutagênicos gerados pela radiação UVC, assim como as enzimas envolvidas no processo de reparação destas lesões em células de Escherichia coli. Nos ensaios as culturas foram irradiadas com o UVC (254 nm; 15W General Electric G15T8 germicidal lamp, USA). Nossos resultados mostram que o uso de quelantes de ferro não alterou a letalidade induzida pelo UVC. A azida sódica, um captador de 1O2, protegeu as cepas contra os danos genotóxicos gerados pelo UVC e também diminuiu a frequência de mutações induzidas no teste com rifampicina. A reversão específica GC-TA foi induzida mais de 2,5 vezes no ensaio de mutagênese. A cepa deficiente na proteína de reparo Fpg, enzima que corrige a lesão 8-oxoG...


Didactically, we can divide the ultraviolet radiation (UV) spectrum into three bands: UVA (400 to 320 nm), UVB (320-290 nm) and UVC (290-100 nm). Despite the UVC or far-UV be efficiently filtered by Earth´s ozone layer and its atmosphere, this is one of bands of UV spectrum used to explore the consequences of DNA damages, since the UVC-induced lethality is related to direct damage in genome cells, such as pyrimidine dimers, which are lethal if not repaired. However, it was shown that UVC radiation can generate reactive oxygen species (ROS) such as singlet oxygen (1O2). Although hydroxyl radical (•OH) cause oxidative modifications in DNA bases, some works suggests that 1O2 is also involved in oxidative DNA damage. This ROS is produced by several biological systems and photosensitivity reactions when chromophores are exposed to visible light or excited by UV light, allowing that energy can be transferred to the oxygen being converted to 1O2, which is known to modify guanine residues, generating 8-oxoG, if not repaired can lead to a GC-TA transversion. The objective of this work was to elucidate the ROS involvement in the genotoxic and mutagenic effects generated by UVC radiation, as well as the enzymes involved in the repair process of these lesions in Escherichia coli cells. In the assays, cultures were irradiated with UVC (254 nm, 15 W General Electric germicidal lamp G15T8, USA). Our results show that the use of iron chelators did not affect the UVC-induced lethality. The sodium azide, a 1O2 quencher, protected strains against the genotoxic damage produced by UVC and also decreased the frequency of mutations induced in rifampicin assay. Reversal specific GC-TA was induced more than 2.5 fold in the mutagenesis assay. The deficient strain in the repair protein Fpg, an enzyme that corrects 8-oxoG lesions, had less DNA breakage than the wild strain in electrophoresis alkaline assay. The UVC-induced lethality was increased in mutants transformed with the pFPG...


Subject(s)
DNA Repair , DNA Damage/radiation effects , Ultraviolet Rays/adverse effects , DNA Repair Enzymes , Escherichia coli/genetics , Escherichia coli/metabolism , Reactive Oxygen Species/radiation effects , Guanine/analogs & derivatives , Singlet Oxygen , Pyrimidine Dimers , Sodium Azide
SELECTION OF CITATIONS
SEARCH DETAIL